
Exponentials and logarithms!

As it turns out, straight lines are not the only way to model physical processes.  There are 
many other types of equations that can be used depending on the behavior of the process 
being modeled.  There are parabolas, cubics, or polynomials of any degree, there are the 
trigonometric functions (sine, cosine, etc...), and many more.  The two we will focus on 
here are exponentials and logarithms.

I. What is an exponential function?
II. How do I tell if a process can be modeled by an exponential?
III. What is a logarithm?
IV. How can I use logarithms to find out useful things?

I.  What is an exponential function?

Functions:
Before we launch into what an exponential function is, we need a working definition of 
a function.  Loosely speaking, a function is a relationship between an input variable
(usually x), and an output variable (usually y.)  If I have a rule that assigns every input 
to a unique output, then I have a function.

The previous discussion on the equation of a straight line could have been phrased in 
terms of a linear function:

Consider the equation y = 3x + 4.

To write this equation as a function, we could replace y with f(x) (pronounced “f of x”):

f(x) = 3x + 4.

Here f is the name of the function, and x is the argument of the function.  If I want to 
know what y is for a particular value of x, I can just substitute that value for x into both 
sides of the equation:

f(2) = 3(2) + 4
f(2) = 10

This statement says that the line represented by this function passes through the point 
(2,10).  The upside of this notation is that both the x and y-coordinates are written in the 
equation. With the previous notation, we would have to include an extra statement 
about the value of x:

When x = 2, y = 10.



We can now write both the x and y coordinates of various points on the line much more 
quickly than we could before.  In fact, we are not restricted to putting in numbers; we 
can put in variable expressions as well!
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In each case, we took our original expression and replaced x by whatever was in the 
parentheses.

Exponential functions:
An exponential function is a function where the variable appears in the exponent.  For 
example:
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The number being raised to the power of x is called the base of the exponential. In this 
case our base is 3. Let’s take a look at the value of this function for various values of x:
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We can see that the y-coordinates of the function begin to increase very quickly as x
increases.  Graphically this looks like:



Exponential growth and decay:
The previous example was of exponential growth, since the value of the function kept 
getting larger as the value of x increased.  Any exponential function with a base that is 
larger than 1 will have the same basic shape.  We can generalize this like so:

An exponential function with base greater than one is called an exponential 
growth function.

What happens if the base is less than one?  Let’s consider the following example:
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Let’s look at some representative values of this function:
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We can see that as x gets larger, the value of the function decreases.  In fact, each value 
is half of the previous value.  Here’s the graph of this function:



Notice that the value of the function decreases toward zero as x gets larger.  We say that 
this function is decaying exponentially to zero.  The decaying part means that the values 
get smaller as x increases.  The exponentially part means that this is an exponential
function.

We can now generalize the notion of an exponential function:

An exponential function can be written in the form: xbaxf )( .
The function is exponential growth if b > 1.
The function is exponential decay if b < 1.

Doubling time and half-life:
An interesting property of exponential functions is that if x is increased by a certain 
amount, the value of the function will double (if it is exponential growth) or get cut in 
half (if it is exponential decay.)  The amount that x is increased in order to achieve this 
is called the doubling time (for growth) and the half-life (for decay.) 

We can use this property to come up with a different form for the exponential function, 
expressed in terms of the doubling time or half-life.

Example:
Find a formula for a population with an initial value (that is, the value at t = 0) of 
5 that doubles every 7 years.

If we denote the population after t years as P(t), we can find the value of the function at 
various times:
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A pattern immediately emerges.  The exponent on the 2 increases by 1 every 7 years.  It 

should not be hard to convince yourself that the exponent should be 
7

t
.  Since the 5 

appears at the front of every expression, it should have a prominent place in our 
function as well.  Just by staring at the pattern a little bit, we can see that the population 
function should be:
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If we check the value of this function for any value of t, we can see that this agrees with 
our model.



For a function that decays exponentially, we could go through a similar exercise.  The 
result of this is if we are given an initial value for our function and the doubling time or 
half-life, we can very quickly find a formula for the function:

Exponential growth:  d

t
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Here 0P is the initial value of the function, and d is the doubling time.

Exponential decay:  
h

t

PtP 







2

1
)( 0

Here 0P is the initial value of the function and h is the half-life.

Summary:
Exponential functions are functions where the variable is in the exponent.

They can be written in the form:  xbaxf )( where b > 0.
If b > 1, the function is exponential growth.
If b < 1, the function is exponential decay.

An exponential growth function can be written in terms of its initial value 0P and its 

doubling time d like so:
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An exponential decay function can be written in terms of its initial value 0P and its 

half-life h like so:
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II. When can a process be modeled as an exponential function?
In order to determine if a set of data can be modeled as either exponential growth or 
decay, we need to figure out some properties of exponential functions.

Consider the function xbaxf )( :
Let’s look at how this function behaves as x increases in increments of 1.
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We can see that if x is increased by one, the function gets multiplied by the base:
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From just a minor rearrangement of the terms, we get:

b
nf

nf

b
f

f

b
f

f

b
f

f










)(

)1(

)2(

)3(

)1(

)2(

)0(

)1(



We can see that if we divide consecutive values of the exponential function, we always 
get the same number, which is just the base of the exponential function.  This suggests 
a method for determining if a set of data can be modeled as an exponential:  Divide 
consecutive values of the function, and see if you get the same number (or very nearly 
the same number) every time!
If you do get the same number, you also have the base of the exponential.



It is interesting to compare this to the way we determined if a set of data could be 
modeled as a straight line.  In that case, we subtracted consecutive values of the 
function and checked to see if all the numbers were the same.  If they were, the 
common difference between all of the terms ended up being the slope of the line.  

For exponential functions, we divided consecutive values of the function and checked 
to see if all the numbers were the same.  If they were, the common ratio between all of 
the terms ended up being the base of the exponential.

So if you have a set of data, you can determine which model is a better fit (the linear or 
the exponential) by comparing the difference between consecutive terms and the ratio 
of consecutive terms.

Summary:
To determine if a set of data can be modeled as an exponential function, divide 
consecutive values (where difference in the x values are always the same) of the 
function, and see if you get the same number.  This number should be the value for b in 
the equation:  xbaxf )( .  Once b is known, a can by found by substituting any one 
of the data points into the function.  



III. Logarithms
Sometimes we may wish to solve for a variable that is located in an exponent.  To do so, 
a function was invented in order to undo exponentiation.  This function is called a 
logarithm.  The logarithm is defined as follows:
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These two statements are equivalent.  We can say that the logarithm is the inverse of the 
exponential function.  The base of the exponential b becomes the base of the logarithm.

Here are a couple more things we can conclude from this definition:
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There are simplification rules for logarithms analogous to those for exponentials:
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Let’s see how this applies to something specific:

Consider the statement:  823 

We can rewrite this equation in terms of logs:  3)8(log2 

We can also write this in terms of the log of another base:
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The bases that are used the most.
If you look at your calculator, you’ll notice that there are two buttons used for finding the 
logarithm of a number.  There is the plain log button (which has a base of 10) and the ln
button (which has a base of e = 2.71828…)  As a consequence, most problems are solved 
in terms of logs of base 10 or of base e.  From this point on, if the base of the logarithm is 
not explicitly written with the base, we shall assume it is a log of base 10.

Here is a list of some important values for the log with a base of 10:
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Let’s solve a problem using this:

Solve for x in the following equation:
473  x

We can take the log of both sides of this equation:
)4log()73log(  x

We can use the multiplication rule to turn the left hand side of the equation into 
the sum of two logs:
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We can use the exponent rule to bring the x out of the exponent:
)4log()7log()3log(  x

Now we can solve for x:
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We can simplify further using the division rule:
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Now we just need to know what the log of each number is, either using a 
calculator or looking them up in a table:
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We can check (using a calculator) if we are right by substituting our value for x
into the original equation:

4333.1373 1478. 

Solving for variables inside a logarithm:
We know already that a logarithm undoes an exponential.  The reverse is true, too:  
exponentiation undoes a logarithm.  For this reason, an exponential is sometimes referred 
to as an antilog.  

It is easiest to see how this is done through an example:

Solve for x:
7)12(log3 x

Since the log has a base of 3, we can undo it by raising 3 to the power of each side 
of the equation:
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Notice that the logarithm allows us to solve equations we could not solve before.  



Summary:

The following statements are equivalent:
yb x  and xyb log

The logarithm and exponentials are inverses of each other:
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The important rules for simplifying a log are:
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If the base of a logarithm is not explicitly written, we can assume the base is 10.
The natural logarithm, denoted by ln(x), has a base of e = 2.71828…

We can convert a logarithm of any base into logs of base 10 like so:
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IV. Applications of Logarithms
Many functions encountered in nature are so-called power laws.  These are functions that 
can be expressed in the form kxaxf )( , where a and k are constants that can be 
determined from experimental data.  If we are given a set of data relating two quantities, 
and we are reasonably sure that the function describing this relationship is a power law, 
then we can use logarithms to determine the parameters a and k.

i. How can we know if our function is a power law in the first place?

There is no sure fire way to determine this based on data alone, but a 
convincing condition would be if f(0) = 0.  There are many physical scenarios 
where this must be trivially true.  For example, if you drop a ball from a 
height of 0, then the time it will take to hit the ground will be 0.  Therefore it 
would be reasonable to assume that the function relating height and time is a 
power law.

ii. How do we use logs to determine the parameters of a power law?

Here we need to define something called a log-log plot.  Instead of graphing y
vs. x, we can graph log(y) vs. log(x).  If the function is a power law, then the 
log-log plot will be a straight line, and the slope of the line will be the 
exponent k.  

Here’s how it works:  Start with the original expression:

kxay 

Now, take the log of both sides (any base will do, we’ll use base 10.)
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We can substitute new variables into this expression as follows:
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The new expression is:

kXaY  )log(

This is simply the equation of a straight line with slope k and y-intercept 
log(a).  So with a log-log plot of our data, we can determine the parameters of 
the power law by finding the slope and y-intercept of the graph.



Example: Rolling a ball bearing down a ramp.

Suppose you performed the following experiment: You take a ramp that is inclined 30 
degrees from the horizontal and roll a ball bearing down it (starting from rest) from 
various starting positions.  For each starting position, you time how long it takes the ball 
bearing to reach the bottom.  Here is a cartoon of the setup:

Suppose this is the data collected from the experiment:

Distance (cm) Time (s)
0 0
10 .24
20 .34
30 .41
40 .48
50 .53
60 .59
70 .63
80 .68
90 .72
100 .76



The goal of the experiment is to find a function relating the distance the ball rolls (d) and 
the time it takes to get to the bottom (t).  It could be helpful to see these points plotted on 
a graph:

It is a little hard to tell from the graph, but this does not look like a straight line.  Since 
the graph goes through the origin, it seems reasonable to suspect that the function 
governing the relationship between distance and time is a power law.  We can determine 
this by looking at a log-log plot of the data:

Here is a table of the same data, except the entries will be the log of the entries in the 
previous table:  We shall omit the (0,0) entry, since log(0) doesn’t exist.

Log(Distance) Log(Time)
1 -.62
1.3 -.47
1.48 -.39
1.6 -.32
1.7 -.28
1.78 -.23
1.85 -.20
1.9 -.17
1.95 -.14
2 -.12



If we plot graph this data, we see something that looks much more like a straight line.  
All that is left to do is find the equation of the line, and we’ll have our power law!

A good estimate for the equation of this line will use the first and last points:  (1,-.62) and 
(2,-.12).  

You can verify that the equation of this line is: 12.15.  xy .

This means that the exponent in our power law (k) is .5, and the log of the constant 
multiplier (a) is -1.12.  We can solve for a relatively quickly:
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The function relating the distance the ball rolled and the time the ball took to roll down 
the ramp is thus: 

5.0076. dt 

This function should allow us to make predictions for the time the ball will take to roll 
down the ramp starting from any point on the ramp!



Summary:

 A function is called a power law if it is of the form kxay 

 If a set of data relating two quantities is a power law, then a log-log plot of the 
data will form a straight line.

 The slope of the line will be k, and the y-intercept of the line will be log(a).

Extra Notes:

The data used for the example was more precise than what you would find in an actual 
experiment.  A real experiment would have “noise” due to unforeseen factors such as 
friction, drag, and just plain old human measurement error.  The log-log plot of the data 
in such an event would be almost linear in such a case, and the power law could then be 
approximated by using a technique called linear regression.  This technique would find 
the equation of the straight line that best fits the data, and from there the power law can 
be inferred.


